
MySQL Performance Tuning
and Benchmarking

... or learn how to make your MySQL go faster,
perform better, find trouble pain points, etc.

Colin Charles, Community Relations Manager, APAC
colin@mysql.com | http://bytebot.net/blog/

mailto:colin@mysql.com
http://bytebot.net/blog/

2

Who am I?

 Community Relations Manager, APAC
 Distribution Ombudsman
 Community Engineering
 Summer of Code
 Forge Dude
 Generalised Dolphin Wrangler

 Previously:
 Fedora Project FESCO and PowerPC hacker
 OpenOffice.org contributor

3

Pre-requisite knowledge

 A lot of examples used here will cite the Sakila
sample database
 http://forge.mysql.com/wiki/SakilaSampleDB
 http://dev.mysql.com/doc/

 look for the sakila DB, there's also a world DB (training
use) and menagerie (Beginning MySQL book use)

http://forge.mysql.com/wiki/SakilaSampleDB
http://dev.mysql.com/doc/

4

Agenda

 An Introduction to Benchmarking
 Data Structures
 Query Optimisation and Query Cache
 Indexes
 Storage Engines
 my.cnf options
 Real World MySQL Use
 Getting the code

5

Why Benchmark?

 Allows tracking of performance over time
 application
 SQL snippet
 application script or web page

 You get load and stress information
 Ever wondered if for the job InnoDB or MyISAM

would be better? Or if running on Linux or
FreeBSD made more sense?

6

The Good Scientists Guide to
Benchmarking

 The scientific method suggests changing only
one variable at a time
 configuration variable, adding an index, schema

modification, SQL snippet change

 The scientific method suggests repetition, more
than once to verify results. If results vary
greatly, think about taking averages.
 Repeat, rinse, repeat, rinse!
 (do it at least 3 times)

7

The Good Scientists Guide to
Benchmarking II

 Isolate your environment
 beware network traffic analysers
 non-essential services
 MySQL's very own query cache

 Use a different MySQL instance
 Use the --socket configuration variable for

instance differentiation

 Save all configurations!

8

Benchmarking Tools

 super-smack
 http://vegan.net/tony/supersmack/
 Flexible tool for measuring SQL script performance

 mysqlslap (like ab; in MySQL 5.1)

 MyBench
 http://jeremy.zawodny.com/mysql/mybench/

 SysBench
 http://sysbench.sourceforge.net/
 For raw comparisons of different MySQL versions/platforms

 Apache Bench

http://vegan.net/tony/supersmack/
http://jeremy.zawodny.com/mysql/mybench/
http://sysbench.sourceforge.net/

9

Benchmarking Tools II

 SHOW commands in MySQL
 SHOW PROCESSLIST | STATUS | INNODB
STATUS

 SHOW PROFILE – in 5.0.37 and above, Community
Contribution, Linux only

 EXPLAIN and the Slow Query Log

 MyTop
 http://jeremy.zawodny.com/mysql/mytop/

 vmstat/ps/top/gprof/oprofile (and contents of
procinfo)

http://jeremy.zawodny.com/mysql/mytop/

10

SHOW PROFILE

 SELECT
@@profiling;
 Turn it on: SET
@@profiling=1;

 SELECT * FROM
store;

 SHOW PROFILE
SOURCE;

 SHOW PROFILE
ALL;

(root@hermione) [sakila]> show
profile;
+--------------------+----------+
| Status | Duration |
+--------------------+----------+
(initialization)	0.000036
Opening tables	0.000012
System lock	0.000005
Table lock	0.000008
init	0.000016
optimizing	0.000005
statistics	0.000012
preparing	0.000008
executing	0.000003
Sending data	0.000103
end	0.000005
query end	0.000003
freeing items	0.000007
closing tables	0.000013
logging slow query	0.000003
+--------------------+----------+
15 rows in set (0.00 sec)

11

Slow Query Log

 log_slow_queries=/var/lib/mysql/slo
w-queries.log

 long_query_time = 2

 Then, use mysqldumpslow

 In 5.1, you can log these details directly to a
table, and obviously doesn't require a server
restart
 Currently, when editing my.cnf, you need to restart

the server to incorporate changes

 Slow Query Log Filter:
http://code.google.com/p/mysql-log-filter/

http://code.google.com/p/mysql-log-filter/

12

EXPLAIN basics

 Provides the execution plan chosen by the
MySQL optimiser for a specific SELECT
statement

 Usage is easy! Just append EXPLAIN to your
SELECT statement

 Each row represents information used in
SELECT
 real schema table
 virtual (derived) table or temporary table
 subquery in SELECT or WHERE
 union sets

13

EXPLAIN columns

 select_type – type of “set” the data in row contains

 table – alias (or full table name) of table or derived
table from where data in this set comes from

 type - “access strategy” used to grab data in set

 possible_keys – keys available to optimiser for query

 keys – keys chosen by the optimiser

 rows – estimate of number of rows in set

 extra – information optimiser chooses to give you

 ref – shows column used in join relations

14

EXPLAIN example

Covering indexes are useful.
Why? Query execution

fully from index, without
having to read the row!

http://www.mysqlperformanceblog.com/2006/11/23/covering-index-and-prefix-indexes/

15

Ranges

SELECT * from room

WHERE room_date BETWEEN '2007-09-11' AND
'2007-09-12'\G;

 ensure index is available on field operated upon
by range operator

 too many records to return? Range optimisation
won't be used and you get an index or full table
scan

16

Scans and seeks

 A seek, jumps into a random place (on disk or
in memory) to fetch needed data

 A scan will jump to the start of the data, and
sequentially read (from either disk or memory)
until the end of the data

 Large amounts of data?
 Scan operations are probably better than multiple

seek operations

17

When do you get a full table
scan?

 No WHERE condition

 No index on any field in WHERE condition

 When your range returns a large number of
rows, i.e. too many records in WHERE condition

 Pre-MySQL 5, using OR in a WHERE clause
 now fixed with an index merge, so the optimiser can

use more than one index to satisfy a join condition

 SELECT * FROM

18

Subqueries

 Don't use them; replace with a JOIN
 unique_subquery: results are known to be

distinct
 index_subquery: otherwise

 Co-related subqueries are worse
 executed once for each matched row in outer set of

information
 kills scalability/performance
 rewrite as a JOIN

WHERE p.payment_date = (
 SELECT MAX(payment_date)
 FROM payment
 WHERE payment.customer_id

= p.customer_id

19

Indexes

 Covering index: all fields in SELECT for specific
table are contained in index
 when using EXPLAIN, notice “Using index”

 Remember that when using InnoDB, use a
small PK value (as it is appended to every
record in the secondary index)
 If you don't add a PK, InnoDB adds one

automatically
 Its a 6-byte integer!

 Always, add a Primary Key

20

Good Schema Practice

 Use small data types
 Is a BIGINT really required?

 Small data types allow more index and data
records to fit into a single block of memory

 Normalise first, de-normalise later
 Generally, 3NF works pretty well

21

Storing IP addresses

 IP addresses always become an INT
UNSIGNED

 Each subnet corresponds to an 8-byte division
of the underlying INT UNSIGNED

 From string to int? Use INET_ATON()

 From int to string? Use INET_NTOA()

 We're looking at native types for IPv6, thanks to
the Google Summer of Code 2007
 We have native types for IPv6, in MySQL 6.0-beta

22

Query Cache

Parser

Optimizer

Query
Cache

Pluggable Storage Engine API

MyISAM InnoDB MEMORY Falcon Archive PBXT SolidDB Cluster
(Ndb)

Connection
Handling &

Net I/O

“Packaging”

Clients

23

Query Cache

 Understand your applications read/write ratio
for most effective use

 Compromise between CPU usage and read
performance

 Remember that the bigger your query cache,
you may not see better performance, even if
your application is read heavy

24

Query Cache Invalidation

 Coarse invalidation designed to prevent CPU
overuse
 Happen during finding and storing cache entries

 Thus, any modification to any table referenced
in the SELECT will invalidate any cache entry
which uses that table
 Use vertical table partitioning as a fix

 Query Cache is flushed on each update

25

Choosing a Storage Engine

 MySQL's strong point: many engines
 Use InnoDB for most operations (esp. OLTP),

except:
 big, read only tables
 high volume streaming tables (logging)
 specialised needs (have special engines)

 Tune InnoDB wisely
 http://www.mysqlperformanceblog.com/files/present

ations/UC2007-Innodb-Performance-
Optimization.pdf

26

Choosing a Storage Engine

 MyISAM
 Has excellent insert performance, small footprint

 No transactions, FK support
 Good for logging, auditing, data warehousing

 Archive
 Very fast insert and table scan performance
 Read only. Good for archiving, audit logging

 Memory
 Great for lookup tables, session data, temporary

tables, calculation tables

27

Quick InnoDB Tuning Tips
 innodb_file_per_table – splits InnoDB data

into a file per table, rather than one large
contiguous file
 allows optimize table `table` to clear

unused space
 innodb_buffer_pool_size =
(memory*0.80)

 innodb_flush_log_at_trx_commit – logs
flushed to disk at each transaction commit. ACID
guarantees, but expensive

 innodb_log_file_size – keep it high
(64-512MB), however recovery time increases
(4GB is largest)

28

Quick my.cnf tuning tips

 key_buffer_size – About (memory*0.40) for
MyISAM (which uses OS cache to cache data)
tables. Dependant on indexes, data size,
workloads.

 table_cache – Act of opening tables =
expensive. Size cache to keep most tables
open. 1024 for a few hundred tables

 thread_cache – Creation/destruction during
connect/disconnect = expensive. 16?

 query_cache_size – 32-512MB is OK, but
don't keep it too large

Good reference from MySQL Camp: http://mysqlcamp.org/?q=node/39

http://mysqlcamp.org/?q=node/39

29

Real World MySQL Use (RWMU)

 Run many servers
 Your serious application cannot run on “the server”

 “Shared nothing” architecture
 Make no single point of contention in the system
 Scales well, just by adding cheap nodes
 If it works for Google, it will work for you!

30

RWMU: State and Session
Information

 Don't keep state within the application server
 Key to being stateless: session data

 Don't store it locally
 The Web isn't session based, its request following

requests
 Store session data in the database!
 Harness memcached

 Cookies are best validated by checksums and
timestamps (encrypting is a waste of CPU
cycles)

31

RWMU: Caching

 Not good for dynamic content, especially per
user content (think modern Web applications)

 Cache full pages, all in application, and include
the cookie (as the cache key)

 Use mod_cache, squid, and the Expires header
to control cache times

 A novel way: cache partial pages!
 pre-generate static page snippets, then bind them in

with dynamic content into cached page

32

RWMU: Data Partitioning

 Replication is great for read heavy applications
 Write intensive applications should look at

partitioning
 Partition with a global master server in mind

 Give out global PKs and cache heavily
(memcached)

 It should also keep track of all the nodes with data

 Consider the notion of summary databases
 Optimised for special queries like full-text search, or

different latency requirements

33

RWMU: Blobs

 Large binary object storage is interesting
 Image data is best kept in the filesystem, just use

metadata in DB to reference server and path to
filename

 Try the Amazon S3 storage engine?
 Store them in (MyISAM) tables, but split it so you

don't have larger than 4GB tables
 Metadata might include last modified date

34

RWMU: Misc. tips

 Unicode – use it
 What's the most frequently used language in blogs?
 http://dev.mysql.com/doc/refman/5.1/en/faqs-cjk.html

 Use UTC for time
 Think about replication across geographical

boundaries

 sql_mode might as well be strict

 Keep configuration in version control
 Then consider puppet or slack for management of

various servers

http://dev.mysql.com/doc/refman/5.1/en/faqs-cjk.html

35

Getting the bleeding edge code

 We still use BitKeeper
 It is non-free software, and very expensive
 However, BitMover provides bkf, a free tool

that allows cloning, and pulling updates
 It doesn't allow committing code

 Our trees are public!
 ... as long as the synchronisation doesn't break,

they're also very up-to-date

 http://mysql.bkbits.net/

http://mysql.bkbits.net/

36

bkf 101

 bkf clone
bk://mysql.bkbits.net/mysql-5.0-
community mysql-5.0-community
 clones the tree, to a local directory

 bkf pull
 Updates the tree with the latest changes

 bkf clone -rTAG
bk://mysql.bkbits.net/mysql-5.0-
community mysql-5.0-community-TAG
 replace TAG with mysql-5.0.45 or something, to get

actual releases

37

Building MySQL 101

 Before making changes, build MySQL and
ensure tests pass

 BUILD/compile-dist
 builds mysql, as it would be built upstream

 make test

 make dist
 source tarball generation
 make dist --ignore ndb

 scripts/make_binary_distribution

38

Testing MySQL

 Use the MySQL Sandbox
 http://sourceforge.net/projects/mysql-sandbox
 Its really, MySQL in a one-click install
 ./express_install.pl mysql-5.0.45-
linux-powerpc64.tar.gz

 Check ~/msb_5.0.45 and run ./use

 Linux/OSX only, sorry Windows folk
 Does not require root privileges, so can be run

remotely on shell accounts, etc.

http://sourceforge.net/projects/mysql-sandbox

39

Resources

 MySQL Forge and the Forge Wiki
 http://forge.mysql.com/

 MySQL Performance Blog
 http://www.mysqlperformanceblog.com/

 Planet MySQL
 http://planetmysql.org/

 #mysql-dev on irc.freenode.net
 chat with developers, and knowledgeable

community members

http://forge.mysql.com/
http://www.mysqlperformanceblog.com/
http://planetmysql.org/

40

Thanks! Questions?

E-mail me:
colin@mysql.com

Catch me on IRC, at #mysql-dev:
ccharles

mailto:colin@mysql.com

