
MySQL Performance Tuning
and Benchmarking

... or learn how to make your MySQL go faster,
perform better, find trouble pain points, etc.

Colin Charles, Community Relations Manager, APAC
colin@mysql.com | http://bytebot.net/blog/

mailto:colin@mysql.com
http://bytebot.net/blog/

2

Who am I?

 Community Relations Manager, APAC
 Distribution Ombudsman
 Community Engineering
 Summer of Code
 Forge Dude
 Generalised Dolphin Wrangler

 Previously:
 Fedora Project FESCO and PowerPC hacker
 OpenOffice.org contributor

3

Pre-requisite knowledge

 A lot of examples used here will cite the Sakila
sample database
 http://forge.mysql.com/wiki/SakilaSampleDB
 http://dev.mysql.com/doc/

 look for the sakila DB, there's also a world DB (training
use) and menagerie (Beginning MySQL book use)

http://forge.mysql.com/wiki/SakilaSampleDB
http://dev.mysql.com/doc/

4

Agenda

 An Introduction to Benchmarking
 Data Structures
 Query Optimisation and Query Cache
 Indexes
 Storage Engines
 my.cnf options
 Real World MySQL Use
 Getting the code

5

Why Benchmark?

 Allows tracking of performance over time
 application
 SQL snippet
 application script or web page

 You get load and stress information
 Ever wondered if for the job InnoDB or MyISAM

would be better? Or if running on Linux or
FreeBSD made more sense?

6

The Good Scientists Guide to
Benchmarking

 The scientific method suggests changing only
one variable at a time
 configuration variable, adding an index, schema

modification, SQL snippet change

 The scientific method suggests repetition, more
than once to verify results. If results vary
greatly, think about taking averages.
 Repeat, rinse, repeat, rinse!
 (do it at least 3 times)

7

The Good Scientists Guide to
Benchmarking II

 Isolate your environment
 beware network traffic analysers
 non-essential services
 MySQL's very own query cache

 Use a different MySQL instance
 Use the --socket configuration variable for

instance differentiation

 Save all configurations!

8

Benchmarking Tools

 super-smack
 http://vegan.net/tony/supersmack/
 Flexible tool for measuring SQL script performance

 mysqlslap (like ab; in MySQL 5.1)

 MyBench
 http://jeremy.zawodny.com/mysql/mybench/

 SysBench
 http://sysbench.sourceforge.net/
 For raw comparisons of different MySQL versions/platforms

 Apache Bench

http://vegan.net/tony/supersmack/
http://jeremy.zawodny.com/mysql/mybench/
http://sysbench.sourceforge.net/

9

Benchmarking Tools II

 SHOW commands in MySQL
 SHOW PROCESSLIST | STATUS | INNODB
STATUS

 SHOW PROFILE – in 5.0.37 and above, Community
Contribution, Linux only

 EXPLAIN and the Slow Query Log

 MyTop
 http://jeremy.zawodny.com/mysql/mytop/

 vmstat/ps/top/gprof/oprofile (and contents of
procinfo)

http://jeremy.zawodny.com/mysql/mytop/

10

SHOW PROFILE

 SELECT
@@profiling;
 Turn it on: SET
@@profiling=1;

 SELECT * FROM
store;

 SHOW PROFILE
SOURCE;

 SHOW PROFILE
ALL;

(root@hermione) [sakila]> show
profile;
+--------------------+----------+
| Status | Duration |
+--------------------+----------+
(initialization)	0.000036
Opening tables	0.000012
System lock	0.000005
Table lock	0.000008
init	0.000016
optimizing	0.000005
statistics	0.000012
preparing	0.000008
executing	0.000003
Sending data	0.000103
end	0.000005
query end	0.000003
freeing items	0.000007
closing tables	0.000013
logging slow query	0.000003
+--------------------+----------+
15 rows in set (0.00 sec)

11

Slow Query Log

 log_slow_queries=/var/lib/mysql/slo
w-queries.log

 long_query_time = 2

 Then, use mysqldumpslow

 In 5.1, you can log these details directly to a
table, and obviously doesn't require a server
restart
 Currently, when editing my.cnf, you need to restart

the server to incorporate changes

 Slow Query Log Filter:
http://code.google.com/p/mysql-log-filter/

http://code.google.com/p/mysql-log-filter/

12

EXPLAIN basics

 Provides the execution plan chosen by the
MySQL optimiser for a specific SELECT
statement

 Usage is easy! Just append EXPLAIN to your
SELECT statement

 Each row represents information used in
SELECT
 real schema table
 virtual (derived) table or temporary table
 subquery in SELECT or WHERE
 union sets

13

EXPLAIN columns

 select_type – type of “set” the data in row contains

 table – alias (or full table name) of table or derived
table from where data in this set comes from

 type - “access strategy” used to grab data in set

 possible_keys – keys available to optimiser for query

 keys – keys chosen by the optimiser

 rows – estimate of number of rows in set

 extra – information optimiser chooses to give you

 ref – shows column used in join relations

14

EXPLAIN example

Covering indexes are useful.
Why? Query execution

fully from index, without
having to read the row!

http://www.mysqlperformanceblog.com/2006/11/23/covering-index-and-prefix-indexes/

15

Ranges

SELECT * from room

WHERE room_date BETWEEN '2007-09-11' AND
'2007-09-12'\G;

 ensure index is available on field operated upon
by range operator

 too many records to return? Range optimisation
won't be used and you get an index or full table
scan

16

Scans and seeks

 A seek, jumps into a random place (on disk or
in memory) to fetch needed data

 A scan will jump to the start of the data, and
sequentially read (from either disk or memory)
until the end of the data

 Large amounts of data?
 Scan operations are probably better than multiple

seek operations

17

When do you get a full table
scan?

 No WHERE condition

 No index on any field in WHERE condition

 When your range returns a large number of
rows, i.e. too many records in WHERE condition

 Pre-MySQL 5, using OR in a WHERE clause
 now fixed with an index merge, so the optimiser can

use more than one index to satisfy a join condition

 SELECT * FROM

18

Subqueries

 Don't use them; replace with a JOIN
 unique_subquery: results are known to be

distinct
 index_subquery: otherwise

 Co-related subqueries are worse
 executed once for each matched row in outer set of

information
 kills scalability/performance
 rewrite as a JOIN

WHERE p.payment_date = (
 SELECT MAX(payment_date)
 FROM payment
 WHERE payment.customer_id

= p.customer_id

19

Indexes

 Covering index: all fields in SELECT for specific
table are contained in index
 when using EXPLAIN, notice “Using index”

 Remember that when using InnoDB, use a
small PK value (as it is appended to every
record in the secondary index)
 If you don't add a PK, InnoDB adds one

automatically
 Its a 6-byte integer!

 Always, add a Primary Key

20

Good Schema Practice

 Use small data types
 Is a BIGINT really required?

 Small data types allow more index and data
records to fit into a single block of memory

 Normalise first, de-normalise later
 Generally, 3NF works pretty well

21

Storing IP addresses

 IP addresses always become an INT
UNSIGNED

 Each subnet corresponds to an 8-byte division
of the underlying INT UNSIGNED

 From string to int? Use INET_ATON()

 From int to string? Use INET_NTOA()

 We're looking at native types for IPv6, thanks to
the Google Summer of Code 2007
 We have native types for IPv6, in MySQL 6.0-beta

22

Query Cache

Parser

Optimizer

Query
Cache

Pluggable Storage Engine API

MyISAM InnoDB MEMORY Falcon Archive PBXT SolidDB Cluster
(Ndb)

Connection
Handling &

Net I/O

“Packaging”

Clients

23

Query Cache

 Understand your applications read/write ratio
for most effective use

 Compromise between CPU usage and read
performance

 Remember that the bigger your query cache,
you may not see better performance, even if
your application is read heavy

24

Query Cache Invalidation

 Coarse invalidation designed to prevent CPU
overuse
 Happen during finding and storing cache entries

 Thus, any modification to any table referenced
in the SELECT will invalidate any cache entry
which uses that table
 Use vertical table partitioning as a fix

 Query Cache is flushed on each update

25

Choosing a Storage Engine

 MySQL's strong point: many engines
 Use InnoDB for most operations (esp. OLTP),

except:
 big, read only tables
 high volume streaming tables (logging)
 specialised needs (have special engines)

 Tune InnoDB wisely
 http://www.mysqlperformanceblog.com/files/present

ations/UC2007-Innodb-Performance-
Optimization.pdf

26

Choosing a Storage Engine

 MyISAM
 Has excellent insert performance, small footprint

 No transactions, FK support
 Good for logging, auditing, data warehousing

 Archive
 Very fast insert and table scan performance
 Read only. Good for archiving, audit logging

 Memory
 Great for lookup tables, session data, temporary

tables, calculation tables

27

Quick InnoDB Tuning Tips
 innodb_file_per_table – splits InnoDB data

into a file per table, rather than one large
contiguous file
 allows optimize table `table` to clear

unused space
 innodb_buffer_pool_size =
(memory*0.80)

 innodb_flush_log_at_trx_commit – logs
flushed to disk at each transaction commit. ACID
guarantees, but expensive

 innodb_log_file_size – keep it high
(64-512MB), however recovery time increases
(4GB is largest)

28

Quick my.cnf tuning tips

 key_buffer_size – About (memory*0.40) for
MyISAM (which uses OS cache to cache data)
tables. Dependant on indexes, data size,
workloads.

 table_cache – Act of opening tables =
expensive. Size cache to keep most tables
open. 1024 for a few hundred tables

 thread_cache – Creation/destruction during
connect/disconnect = expensive. 16?

 query_cache_size – 32-512MB is OK, but
don't keep it too large

Good reference from MySQL Camp: http://mysqlcamp.org/?q=node/39

http://mysqlcamp.org/?q=node/39

29

Real World MySQL Use (RWMU)

 Run many servers
 Your serious application cannot run on “the server”

 “Shared nothing” architecture
 Make no single point of contention in the system
 Scales well, just by adding cheap nodes
 If it works for Google, it will work for you!

30

RWMU: State and Session
Information

 Don't keep state within the application server
 Key to being stateless: session data

 Don't store it locally
 The Web isn't session based, its request following

requests
 Store session data in the database!
 Harness memcached

 Cookies are best validated by checksums and
timestamps (encrypting is a waste of CPU
cycles)

31

RWMU: Caching

 Not good for dynamic content, especially per
user content (think modern Web applications)

 Cache full pages, all in application, and include
the cookie (as the cache key)

 Use mod_cache, squid, and the Expires header
to control cache times

 A novel way: cache partial pages!
 pre-generate static page snippets, then bind them in

with dynamic content into cached page

32

RWMU: Data Partitioning

 Replication is great for read heavy applications
 Write intensive applications should look at

partitioning
 Partition with a global master server in mind

 Give out global PKs and cache heavily
(memcached)

 It should also keep track of all the nodes with data

 Consider the notion of summary databases
 Optimised for special queries like full-text search, or

different latency requirements

33

RWMU: Blobs

 Large binary object storage is interesting
 Image data is best kept in the filesystem, just use

metadata in DB to reference server and path to
filename

 Try the Amazon S3 storage engine?
 Store them in (MyISAM) tables, but split it so you

don't have larger than 4GB tables
 Metadata might include last modified date

34

RWMU: Misc. tips

 Unicode – use it
 What's the most frequently used language in blogs?
 http://dev.mysql.com/doc/refman/5.1/en/faqs-cjk.html

 Use UTC for time
 Think about replication across geographical

boundaries

 sql_mode might as well be strict

 Keep configuration in version control
 Then consider puppet or slack for management of

various servers

http://dev.mysql.com/doc/refman/5.1/en/faqs-cjk.html

35

Getting the bleeding edge code

 We still use BitKeeper
 It is non-free software, and very expensive
 However, BitMover provides bkf, a free tool

that allows cloning, and pulling updates
 It doesn't allow committing code

 Our trees are public!
 ... as long as the synchronisation doesn't break,

they're also very up-to-date

 http://mysql.bkbits.net/

http://mysql.bkbits.net/

36

bkf 101

 bkf clone
bk://mysql.bkbits.net/mysql-5.0-
community mysql-5.0-community
 clones the tree, to a local directory

 bkf pull
 Updates the tree with the latest changes

 bkf clone -rTAG
bk://mysql.bkbits.net/mysql-5.0-
community mysql-5.0-community-TAG
 replace TAG with mysql-5.0.45 or something, to get

actual releases

37

Building MySQL 101

 Before making changes, build MySQL and
ensure tests pass

 BUILD/compile-dist
 builds mysql, as it would be built upstream

 make test

 make dist
 source tarball generation
 make dist --ignore ndb

 scripts/make_binary_distribution

38

Testing MySQL

 Use the MySQL Sandbox
 http://sourceforge.net/projects/mysql-sandbox
 Its really, MySQL in a one-click install
 ./express_install.pl mysql-5.0.45-
linux-powerpc64.tar.gz

 Check ~/msb_5.0.45 and run ./use

 Linux/OSX only, sorry Windows folk
 Does not require root privileges, so can be run

remotely on shell accounts, etc.

http://sourceforge.net/projects/mysql-sandbox

39

Resources

 MySQL Forge and the Forge Wiki
 http://forge.mysql.com/

 MySQL Performance Blog
 http://www.mysqlperformanceblog.com/

 Planet MySQL
 http://planetmysql.org/

 #mysql-dev on irc.freenode.net
 chat with developers, and knowledgeable

community members

http://forge.mysql.com/
http://www.mysqlperformanceblog.com/
http://planetmysql.org/

40

Thanks! Questions?

E-mail me:
colin@mysql.com

Catch me on IRC, at #mysql-dev:
ccharles

mailto:colin@mysql.com

